One Atmospheric Nuclear Explosion Could Take Out the Power Grid

MAGA News Central: Making American Businesses Great Again

New study identifies vulnerabilities to EMP attack

In July, Chinese researchers urged their government to increase the country’s readiness for defending against a high-altitude electromagnetic pulse (EMP) attack. Just over a year ago, a group of American researchers released a report warning that China possessed the capability to conduct an EMP attack against the United States. Military and non-proliferation experts are worried about the growing temptation by nuclear-armed countries to engage in a first-strike EMP attack using nuclear weapons that, while avoiding direct casualties, could prove devastating to electric grids and electronic devices from smartwatches to supercomputers.

The enormous potential of an electromagnetic pulse released by the high-altitude detonation of a nuclear weapon has been recognized for some time. In 1962, the U.S. conducted an atmospheric test of a 1.45 megaton thermonuclear weapon, code-named Starfish Prime, 250 miles above Johnston Island in the Pacific Ocean. Over 1,000 miles away, the blast knocked out electricity supply in parts of Hawaii and disrupted telephone service for a period of time. In addition, radiation from the test damaged several satellites in low-Earth orbit, taking them out of service. Decades later, the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack determined as early as 2008 that the U.S. would face catastrophic consequences from an EMP attack given its growing dependence on electronics of all forms and complete reliance upon the electrical grid.

And yet, until now, government and industry risk assessments about EMP attacks and their effects on the power grid have been based on oversimplified models of the solid Earth that assume zero variation in depth or composition. But, as it turns out, the actual effects on the power grid of an electromagnetic pulse in outer space are strongly determined by the three-dimensional distribution of rocks beneath our feet.

By NATASHA BAJEMA

Read Full Article on Spectrum.ieee.org

Contact Your Elected Officials